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Alzheimer’s disease (AD) is a complex disorder with strong genetic factors. The proposed framework is
applied to Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. We present a novel framework
integrating ensemble learning and MDR constructive induction algorithm to discover epistasis interac-
tions associated with AD in a computationally efficient method. Discovering epistasis interactions is a
big challenge and significantly impacts personalized medicine (PM). The applied ensemble learning algo-
rithms are random forests (RF) with Gini index and permutation importance, Extreme Gradient Boosting
(XGBoost), and classification and regression trees (CART). The classification accuracy of 5-way models
varied between (0.8674–0.8758), whereas the accuracy of 2-way, 3-way, and 4-way models varied
between (0.6515–0.6649), (0.7071–0.7170), and (0.7811–0.7878) respectively. The promising results of
this proposed framework show high-ranked risk genes and up to 5-way epistasis models that contribute
to the disease risk efficiently and at higher accuracy.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Personalized medicine, also named precision medicine, is a sig-
nificant model that tailors the patient’s treatment to his character-
istics. Investigating epistasis interactions holds a substantial key to
PM. Networks of gene interactions have clues to the treatment
response and disease susceptibility. Precision medicine needs an
enhanced understanding of the relationship between genetic data
and complex diseases [1]. The main target of genome-wide associ-
ation studies (GWAS) is to investigate the genetic variants across
the human genome for detecting the SNPs most associated with
complex diseases such as cancer, autoimmune, and AD [2]. Differ-
ent computational and statistical approaches can identify genetic
variants related to complex diseases. These methods can be catego-
rized into single-locus and multi-locus analyses [3].

The single-locus approach investigates each SNP independently
and its relation with the phenotype. Unfortunately, the single-
locus analysis failed to demonstrate disease heritability and dis-
cover genetic risk factors. The multi-locus approach investigates
the SNPs combinations and captures the interactions between sev-
eral SNPs in the genetic data [4]. Most risky diseases are caused
due to complex interactions amongmultiple genes. However, some
computational and statistical challenges exist for modeling non-
linear SNP interactions, discovering the most significant genetic
variables, and investigating the explored epistasis interaction mod-
els. Hence, the epistasis interactions better explain the susceptibil-
ity of risky diseases than individual genetic variants [5].

Feature selection techniques are considered the core concept in
machine learning, which improves the model’s performance. The
data features that are used for training the machine learning algo-
rithms have a significant influence on the achieved performance.
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Furthermore, the relevant features can positively impact model
performance. Therefore, feature selection is essential in designing
the model to eliminate irrelevant or partially relevant features
[6]. Common feature selection techniques are odds ratio, chi-
square, logistic regression, and Relief-based algorithms. It was
shown that Relief-based methods, specifically Tuned ReliefF (TuRF)
method achieved remarkable results in filtering data features and
ranking the most significant data attributes [7]. In this proposed
work, TuRF method is applied for filtering the most significant
SNPs associated with the disease that contribute to the phenotypic
result through epistasis interactions.

The ensemble learning method is a machine learning model
where many algorithms are trained to solve the same problem.
In contrast, traditional machine learning techniques try to learn
one hypothesis from training data. The main advantage of ensem-
ble learning methods is trying to contrast a group of hypotheses
and integrate them. Ensemble learning aims to incorporate the
decisions from several models for enhancing predictive or classifi-
cation performance [8]. The importance weight of the features is
obtained using ensemble methods. These methods are still an
important research area that may contribute to the success of
PM. Hence, TuRF feature selection technique was applied in this
study to reduce the ADNI data features to be manageable.

Feature importance techniques assign a score to input attri-
butes depending on their significance in predicting the goal vari-
able. They play a significant role in providing insight into the
data and the model for enhancing the performance and the effi-
ciency of the predictive model [9]. The scores are important in
the predictive model on the problem for understanding the data
and the model and input attribute reduction. Feature importance
scores can be used to select the features with the highest scores
and delete the features with the lowest scores to improve the
model performance.

Although the notable success of these methods lately, there is a
lack of studies that provide insights about how these techniques
shall be utilized in discovering the risk susceptibility SNPs associ-
ated with AD through epistasis interactions. The main target of this
paper is to fill the notable gap in the literature and comprehen-
sively apply ensemble learning methods to explore the most signif-
icant SNPs through gene-gene interactions. In this proposed work,
various methods in ensemble learning were used, such as RF with
Gini index and permutation importance [10], XGBoost [11], and
CART [12].

The main contributions of this paper are as the following:

� Integrating constructive induction algorithms like MDR with
ensemble learning algorithms in the proposed framework
makes it robust, applicable, and reliable to create models for
other risky diseases.

� The proposed framework suggests novel genes associated with
AD

� Our results show high-ranked risk genes and up to 5-way epis-
tasis models that may help better understand the disease etiol-
ogy to diagnose and improve personalized therapeutic
strategies.

� The results revealed that the reported accuracy scores of the
proposed framework outperform the referenced literature
work.

The following sections of the paper are organized as follows;
Section 2 shows the background. Section 3 introduces the litera-
ture review. Section 4 describes the materials and methods. Sec-
tion 5 presents the results. Section 6 presents the discussion.
Finally, Section 7 explains the conclusions.
2

2. Background

Alzheimer’s disease (AD) is a complex neurodegenerative dis-
ease that leads to memory problems, confusion, and impairments
in semantic memory [14]. This disease is considered the cause of
60:70 % of dementia cases. Difficulty in remembering recent events
is regarded as one of the AD symptoms. The advancement of AD
leads to more problems like motivation loss, planning, behavioral
issues, and self-care management problems. AD is a complex, irre-
versible, progressive brain disease that causes memory destruction
and difficulty carrying out the simplest tasks. AD disease is one of
the currently leading causes of death all over the world. This dis-
ease is the most common cause of dementia among older people
[15].

Dementia is the loss of thinking, behavioral abilities, reasoning,
and remembering. Scientists try to explore the brain changes
involved in the onset and advancement of the disease. The complex
brain changes lead to memory and cognitive problems. These
changes are considered toxic changes in the brain [15]. Apolipopro-
tein E4 (apoE4) is one of the most widespread genetic risk factors
for this complex disease. It appeared in several AD cases at loci
rs429358 and.

rs7412 [16]. Hence, this risky gene is a vital possible therapeutic
target for this disease. Detecting the most effective and important
biomarkers in the early stages of the disease can improve searching
for treatment and slow its progression.

Epistasis interactions are considered a genetic phenomenon in
which the function of a given gene depends on the activation or
inactivation of one modifier gene or more. This genetic phe-
nomenon is a deviation from the expected phenotype of combining
two alleles. It has been shown that epistasis interactions effectively
predict phenotype from genotype for a subject. They are examined
in population studies to identify genetic risk factors in risky dis-
eases. Identifying the most significant epistasis interactions has
become an essential topic in complicated trait genetics [17].

It was shown that genes are interacted with each other and do
not function alone. These interactions are essential for gene regu-
lation and different developmental pathways. Some genes can alter
other genes’ functions, resulting in risky diseases. The researchers
concentrating on candidate genes cannot thoroughly investigate
complex diseases [18]. Therefore, many genes can interact with
each other to increase or decrease the susceptibility of a disease.
If the effect of the disease-bearing gene is altered by the effects
of another gene, then identifying the first gene can be difficult.
Identifying the most significant genes will be more difficult if there
are several epistasis interactions related to a disease. Ensemble
learning algorithms are machine learning techniques that hybrid
many base models to generate one powerful predictive model. It
was shown that they could be utilized in training highly accurate
classifiers and discovering new genetic biomarkers by ranking
the features depending on their significance in classification [8].
3. Literature review

Several studies applied many techniques to analyze the individ-
ual effect of each SNP and identify the crucial SNPs associated with
common diseases. There are different related AD diagnoses and
multi-modal methods, such as 1. fusion of multimodality data
using a stage-wise deep neural network to use the complementary
information from both the neuroimaging and genetic data for diag-
nosing AD and its related early statuses [19]. 2. hybrid-fusion net-
work for multi-modal MR image synthesis to explore the modality-
specific properties within each modality and simultaneously
exploits the correlations across multiple modalities [20]. 3. Latent
representation learning method for multi-modality-based AD diag-
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nosis to learn an accurate AD prediction model from the incom-
plete multimodality dataset [21].

Exploring the SNPs of an affected person to predict the disease
risks is a crucial stage in contributing to PM [22]. In addition,
exploring gene-gene interactions is significant for investigating
the mechanism of the disease and developing PM. However, dis-
covering them is still under research [23]. Two different analysis
methods can be used to detect genetic variants associated with dis-
eases. The first approach is a uni-variable analysis that examines
the association of each SNP independently with the phenotype.
The second approach is a multi-variable analysis that can capture
the interactions between multiple SNPs and better explain some
diseases’ susceptibility [24]. In [25], the authors applied machine
learning techniques for predicting AD-affected individuals from
genetic variation. They downloaded the used dataset from ADNI.
The dataset consists of 230 patients and 241 normal people. In that
paper, Least Absolute Shrinkage and Selection Operator (LASSO)
KNN, naive Bayes, RF, and SVM were applied to identify new
genetic markers associated with AD disease. The results revealed
that LASSO scored the best result (0.719). Even so, that research
gave no attention to detecting genetic interactions.

In [26], the authors applied sequential minimal optimization
algorithms with different kernels, Naïve Bayes (NB), Tree Aug-
mented Naive Bayes and K2 learning algorithms. The authors used
a Whole-genome sequencing dataset including 2,379,855 SNPs for
282 controls, 442 mild cognitive impairment, and 48 AD. That
research focused on detecting the most significant SNPs associated
with AD with high classification accuracy. The results revealed that
NB and K2 learning algorithms achieved 98 % and 98.40 % accuracy,
respectively. However, that paper ignored interaction effects
between SNPs. The authors [27] implemented a framework for
detecting epistasis interactions and enhancing early disease diag-
nosis. The authors obtained the dataset from ADNI database. This
dataset consists of 730,525 SNPs for 125 unaffected individuals
and 306 affected individuals. Some algorithms were applied like
naïve Bayes, Support vector machine, k-nearest neighbor, logistic
regression, RF, and MDR classifiers. The best results were achieved
by MDR. The achieved classification accuracy of their proposed
framework varied between 0.7410 and 0.7860. However, the
achieved accuracy needed to be enhanced to investigate this com-
plex disease better.

In [28], the authors conducted a differential network analysis to
reveal potential networks involved in the neuropathogenesis of AD
and detect genes to predict AD. The dataset was obtained from the
Religious Orders Study and the Rush Memory and Aging Project,
including 193 CE patients and 172 controls. That research devel-
oped machine learning techniques like joint density-based non-
parametric differential interaction network analysis (JDINAC), RF,
and Logistic Regression. The JDINAC technique achieved the best
results. It achieved accuracy: 0.791, sensitivity: 0.776, and speci-
ficity: 0.808. However, that study did not identify higher-order
interactions of genes in their analysis.

In [29], the authors present GenEpi, a computational package to
uncover epistasis interactions associated with phenotypes. That
study aims to discover SNP interactions by building GenEpi pack-
age to explore epistasis interactions related to the phenotype using
machine learning. The authors applied their work to an AD dataset
for Alzheimer’s disease Dream Challenge. The used dataset
includes 767 individuals of cases and controls from ADNI database.
They defined the interactions between two SNPs only. Unfortu-
nately, that paper did not detect higher-order interactions of genes
in their analysis. In [30], the authors applied RF method to detect
and model epistasis interactions. They performed a comparative
analysis of feature importance metrics for improving the inter-
pretability of RF with complex interactions. The authors obtained
the dataset from ADNI database. They established that the permu-
3

tation feature importance metric provides a more accurate feature
importance rank estimation in the presence of epistasis interac-
tions. The applied model was tuned with grid search and had a
classification accuracy of 62.6 % for the AD dataset. The achieved
accuracy needed to be increased for better investigation of AD
disease.

In [31], the authors applied elastic net machine learning
methodology to identify the strongest predictors for the risk of
AD, combining all genotyping data (direct effects and epistatic
interactions). The used dataset consists of 1078 individuals (602
controls and 476 cases). After applying the EN method to the data,
the model achieved an accuracy of 72 %, including epistatic inter-
actions between the assessed variants as predictors of AD risk.
Unfortunately, there is a lack of identifying higher-order interac-
tions of genes in their analysis for more understanding of the bio-
logical mechanism of the disease. Many studies focused on uni-
variable analysis and investigated the effect of independent SNP
loci to detect genetic variants associated with the disease [25,26].
However, the studies that focus on discovering multi-locus interac-
tions are still limited and may have more robust associations. This
paper aims to fill the notable gap in the literature for finding the
most significant epistasis interactions up to fifth-order interactions
associated with AD.
4. Materials and methods

The detected genetic causes of the disease mainly concentrated
on individual genes, but it was shown that risky diseases might be
affected by the interaction of genes. Though deep-learning-based
methods can solve many problems, such as feature selection,
model interpretability is one of the biggest challenges with deep
learning. Ensemble learning is a machine learning model where
many algorithms are trained to solve the same problem. In con-
trast, traditional machine learning techniques try to learn one
hypothesis from training data.

The reasons for applying ensemble learning techniques over a
single model are as the following:

� Ensemble learning techniques can make better predictions and
perform better than any traditional machine learning model.

� They are used to improve robustness or reliability in the aver-
age performance of a model by reducing the spread or disper-
sion of the predictions and model performance

The proposed system workflow is described in Fig. 1 to show
the most critical steps. First, the ADNI dataset was loaded and went
through preprocessing steps. The preprocessing steps aim to add
affectional information of individuals identified as normal or case.
Subsequently, APOE genotyping was added by estimating alleles of
the SNPs: rs7412 and rs429358. Then QC was applied to exclude
SNPs with insufficient genotyping quality. After that, highly corre-
lated SNPs were excluded using linkage disequilibrium. Then SNP-
disease association tests were applied to assess the statistical asso-
ciation of each SNP with the disease using a p-value < 0.01. Finally,
their results were intersected to extract the significant SNPs.

After the preprocessing phase, dimensionality reduction was
applied using TuRF algorithm to remove the irrelevant markers.
Then, different ensemble learning algorithms were applied to
detect SNPs that contribute to AD risk through epistasis interac-
tions. The top twenty rankings provided by these algorithms were
integrated to detect 76 possible susceptibility SNPs. Finally, Multi-
locus interaction analysis was performed on these identified SNPs
using MDR to discover and validate the most significant gene-gene
interactions. The critical aspect of this proposed work is to develop
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a high-dimensional model for discovering epistasis interactions
among genetic variants.

4.1. Dataset

The used dataset was downloaded from ADNI database [15].
ADNI GWAS data contained total genotypes for 431 subjects (127
controls and 304 cases). The total number of SNPs is 730,524 for
both the unaffected individuals and the affected AD patients.

4.2. Data preprocessing

In this proposed work, the dataset was downloaded from ADNI
database, and preprocessing steps were applied. Data preprocess-
ing is a vital stage for achieving significant results. Several phases
were used as follows:

(A) The phenotype that described the affection status column
was added as a case or normal person. The number of nor-
mal subjects is 127, while the total number of cases is 304

(B) The SNPs (rs429358 and rs7412) of APOE were not pre-
sented in the ADNI dataset. However, the genotyping of
APOE was performed at the time of participant enrollment
and inserted into the ADNI website. Hence, APOE genotyping
was added to the dataset. Therefore, the total number of
SNPs became 730,526 after merging the APOE genotyping.

(C) Apply Quality Control (QC) using PLINK [32] to filter SNPs
and minimize potential false findings. QC procedures were
applied to the dataset as the following:

� Exclude the persons with a lot of missing genotyping

data. The missing genotyping, which is more than 10 %,
was removed.

� Exclude the SNPs with missing genotype rates. The only
SNPs with a 90 % genotyping rate were included.

� Subsequent analyses can be set to include only SNPs with
MAF >=0.1.
4

After applying these steps, this yielded 431 subjects, including
304 patients and 127 controls. The total number of SNPs after QC
became 530,750.

(D) Applying the LD pruning step is vital for improving the
power of complex disease genetic association studies. The
SNPs of high correlation were removed from the ADNI data-
set, leaving 447,538 markers.

(E) Apply SNP–disease association tests [33] to reduce the enor-
mous computational requirements. Three SNP-disease asso-
ciation tests were applied using PLINK. Every 447,538 SNPs
were independently tested for association with AD disease
in the basic association test, logistic model, and Fisher’s
exact (allelic association) test. The p-value threshold was
used as a significance level for detecting the SNP associa-
tions. The irrelevant SNPs with a p-value of more than 0.01
were excluded. The significant SNPs with a p-value less than
the threshold of 0.01 can lead to a higher power than using
the threshold of 0.05 [34]. Hence, the total number of SNPs
decreased to 4383, 3863, and 3861 using the Basic associa-
tion test, logistic model, and Fisher’s Exact test, respectively.
A total of 3,502 significant SNPs were gained using R [35] by
applying the intersection of the SNP results from the three
tests.

(F) The obtained significant SNP result can reduce the false-
positive association with AD. However, the remaining total
number of SNP is still large. Hence, it is an important step
to apply feature selection techniques.

4.3. Dimensionality reduction

Feature reduction techniques were used to reduce the high
dimensionality and focus on discarding redundant and non-
significant features from the used dataset. TuRF feature selection
method usually works best for big volume data problems and
always fits the complex nature of biology [7]. Furthermore, TuRF
feature selection algorithm was used to improve the performance
of a well-known algorithm called ReliefF algorithm.

This algorithm is a typical representative of the filter method.
Filter algorithm is often used to rank or order features in the data
set. TuRF algorithm is vital in filtering SNPs by adding an iterative
component. This technique can recursively remove the law-ranked
(irrelevant) SNPs in each iteration. For example, if the number of
iterations of this technique is R and the total number of SNPs is
N. TuRF algorithm will discard the N/R least discriminative SNPs
in each iteration. TuRF algorithm was applied using a percentage
of significant SNPs at 30 %. After applying TuRF algorithm, the total
number of SNPs was reduced from 3,502 to 1,050.
4.4. Ensemble learning algorithms

Imbalanced data occurs in real life, like in medical diagnoses in
which patients’ records outnumber normal individuals. Ensemble
learning techniques are considered one of the best solutions for
imbalanced data classification problems. Hence, this paper demon-
strates a novel framework using ensemble learning methods to
solve the imbalanced data problem by enhancing the performance
indicators for the classes that have been the majority of the
samples.

Ensemble learning algorithms are powerful in decreasing vari-
ance and overfitting by using a group of diverse base learners
[36]. Cross-validation is an effective preventative measure against
overfitting. This proposed work used 10-fold cross-validation to
get a better insight into the models, which eventually helped avoid
overfitting.
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We applied ensemble learning methods, including RF with Gini
index and permutation importance, XGBoost, and CART, to detect
each method’s top 20 ranking SNPs. Then these identified signifi-
cant SNPs were integrated to discover their power in exploring
non-linear epistasis interactions for GWAS.

4.4.1. Random forests (RF) feature importance
RF classifier is a powerful tool to classify a new sample based on

a collection of decision trees. A majority of voting was used for
deciding on the class label. This algorithm is an extension of the
bagging of several decision trees [10]. RF is typically treated as a
black box. Hence, we computed feature importance by getting an
insight into the RF model. RF feature importance is computed using
different methods, including Gini importance and permutation
methods. We used Gini importance and permutation methods to
explain which SNPs are relevant.

In this proposed work, RF algorithm was used to apply feature
importance using RandomForestClassifier class implemented in
scikit-learn. However, applying this algorithmwith default settings
of hyper-parameters would not yield the best results for large
GWAS datasets. There is no specific method to calculate how the
change in the hyperparameter values will optimize the model
architecture. Hence, the models’ hyperparameter values were set
by experimentation and specifying a range of possible values for
all the hyperparameters. Thus, we applied parameter tuning for
RF using RandomizedSearchCVmethod to find optimal parameters.

The tuned hyperparameters are: criterion= ‘gini’, n_estimators =
1800, bootstrap: false, min_samples_leaf = 1, max_features=’auto’,
min_samples_split = 5, max_depth = 90. Gini index was used as a
hyper-parameter to choose which feature would be used for split-
ting the data. We used Gini Index [10] to quantify SNPs’ impor-
tance to determine the top-ranking SNPs.

The other method of interpreting RF is to compute feature
importance using permutation feature importance. Permutation
feature importance method randomly shuffles each attribute and
evaluates the change in the model’s performance [13]. The attri-
butes which impact the performance the most are the most signif-
icant ones. In this paper, the permutation_importance function
was used to calculate the feature importance of estimators for
the ADNI dataset. We measured the importance of a SNP by mea-
suring the increase in the model’s prediction error after permuting
the SNPs. In this work, python’s ELI5 library was used to explain
the black-box of RF model by measuring how the score decreases
when a SNP is unavailable. This library provides a convenient
way to calculate permutation importance. We used Gini impor-
tance and permutation methods to determine the top-ranking
SNPs by each and discover their power in finding non-linear epis-
tasis interactions.

4.4.2. XGBoost
Extreme Gradient Boosting (XGBoost) is a scalable end-to-end

tree boosting system used by data scientists to achieve promising
results on several machine learning algorithms challenges. It is a
widely used algorithm for supervised learning in machine learning
[11].

In this paper, the model was built using trees as base learners
depending on XGBoost’s scikit-learn compatible API. The library
XGBoost and other libraries were imported using python. Finally,
we applied parameter tuning for XGBoost using Random-
izedSearchCV method to find optimal parameters.

The tuned hyperparameters are: base_score = 0.5, booster=’gb-
tree’, n_estimators = 100, colsample_bylevel = 1, n_jobs = 1,
nthread = None, objective=’binary:logistic’, and so on for other
parameters. In this work, XGBoost was used as it provides esti-
mates of feature importance from a trained predictive model to
determine the top-ranking SNPs. The top rankings provided by this
5

algorithm are essential to show high-ranked risk genes and epista-
sis interactions that may explain the risk of the disease.

4.4.3. Classification and regression trees (CART)
A Decision Tree (DT) is considered an effective algorithm for

predictive modeling machine learning. The classical DT techniques
have been around for decades. However, modern algorithms like
CART are one of the most powerful techniques available. CART is
used for classification/regression predictive modeling problems.
CART is a non-parametric DT learning algorithm that generates
either regression or classification trees depending on whether the
dependent variable is numerical or categorical. The implemented
algorithm in sklearn is called CART and works with categorical
and numerical targets [12].

In this work, we applied parameter tuning for CART using Ran-
domizedSearchCV method to find the best parameters. The tuned
hyperparameters are: criterion: ‘entropy’, max_depth: 10,
max_features: 18, min_samples_leaf: 7. CART algorithm offers
importance scores based on the reduction in the criterion parame-
ter used to select split points, like Gini or entropy. The optimum
split was chosen by the SNP with less entropy. We used the fea-
ture_importances property to retrieve the relative importance
scores for each input SNP. In this paper, the top-ranking SNPs by
CART algorithm were detected to discover their power in finding
high-ranked epistasis interactions.

4.5. Multi-locus interaction analysis

MDR is a powerful machine learning method that detects inter-
acting combinations of genetic variations related to complex dis-
eases like AD [37]. The top 20 ranking SNPs provided by the
applied ensemble learning techniques were integrated to detect
76 possible susceptibility SNPs. In this proposed work, multi-
locus interaction analysis was performed on the identified SNPs
described in the previous section using MDR to discover significant
epistasis interactions. In this work, MDR was used to collect the
genotypes from 2 SNPs or more into an attribute with high/low-
risk groups. Hence, MDR reduced the high dimensionality of the
features from N dimensions to only one dimension. This process
is called constructive induction, wherein the new feature is defined
as a function of 2 or more other features. The newly generated fea-
tures were assessed for their ability to predict and classify AD sta-
tus. The binary feature is defined as a high-risk attribute if the ratio
of patients to normal in that group is greater than the original ratio
of affected patients to normal people in ADNI dataset. Other than
that, the binary attribute is low risk.

In a GWAS, using an exhaustive search to explore epistasis
interactions is computationally expensive. Therefore, this task
requires a computational load for larger order interactions and
markers. Moreover, when the number of markers is massive, the
number of multi-locus interactions increases. Hence, we present
a novel approach combining ensemble learning and MDR methods
to decrease some shortcomings of the MDR method by determin-
ing the top-ranking SNPs.

In this paper, MDR was used to evaluate pairwise, 3-way, 4-
way, and 5-way interaction predictive accuracy. Since searching
these SNP interaction models within the dataset is computation-
ally complex. Therefore, searching for the significant interactions
was limited to the interactions of the top 20 rankings provided
by the applied ensemble algorithms. These ensemble methods gen-
erated rankings on the significance of SNP contribution to AD clas-
sification. By integrating the top 20 rankings provided by the
ensemble methods, the total number of features became 76 SNPs.

Then the statistical interaction analysis of the 76 identified
SNPs was performed, and they could discover critical gene-gene
interactions. As a result, the coding SNPs mapped to 38 genes, con-
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sisting of known AD-related genes (27 identified genes) and genes
that have not been explored previously related to AD (11 discov-
ered genes), as shown in Table 1.

The newly discovered genes can be possible risk association
genes to AD.

A novel MDR method was proposed using ensemble learning
methodologies to discover new epistasis interactions associated
with AD disease. The results demonstrate that this proposed
framework can discover new risk genes and epistasis interactions
that may help better understand the disease etiology.
4.6. Evaluation criteria

In this proposed work, the predictive performance of the
applied ensemble learning algorithms was evaluated using classifi-
cation accuracy, precision, recall, and f1-score for exploring the
best SNPs. These significant SNPs were utilized in the proposed
framework to contribute to the risk of AD through epistasis inter-
actions. The performance of the models was estimated from 10-
fold cross-validation along with the training and testing datasets.
The chosen metric of model fit was balanced accuracy (BA) aver-
aged for all cross-validation experiments.

BA metric is the average of the sensitivity and specificity. It was
shown that it outperforms the traditional measure of classification
accuracy [38]. The main target of this paper is to discover new
epistasis interactions from large-scale genotyping. This can
enhance the understanding of the biological mechanism of the dis-
Table 1
Known AD association genes, and unknown but potential AD association genes.

Gene Name Identified Genes Discovered Genes

HPCAL1 Yes [40]
CTNNA2 Yes [41]
GRID2 Yes [42]
CRYL1 Yes [43]
ANK2 Yes [44]
FHOD3 Yes [44]
CPNE4 Yes [44]
LINC02880 Yes
PDE1C Yes
VAV3 Yes [44]
F5 Yes [45]
KIAA1217 Yes [45]
TAFA2 Yes [45]
IGF1R Yes [45]
ZFP90 Yes [45]
LDLRAD4 Yes [45]
CYP24A1 Yes [45]
ARHGAP15 Yes [46]
LOC105374122 Yes
LOC105374292 Yes
SLC2A9 Yes [47]
NSUN7 Yes
TRPC3 Yes [48]

PDE4D Yes [45]
LOC105379107 Yes
EBF2 Yes [49]
EXTL3 Yes [50]
ADCY8 Yes [51]
LOC101929507 Yes
ELAVL2 Yes [52]

SCUBE2 Yes [47]
IGSF9B Yes [53]
GALNT8 Yes [54]
LOC112268136 Yes
LINC01482 Yes
FAM20A Yes [47]
LINC01837 Yes
KRTAP27-1 Yes
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ease and detect effective biomarkers that can contribute to the suc-
cess of PM.

4.7. Implementations

In this proposed work, I7 PC was used with the following
software:

� PLINK version 1.07 [32] was used for filtering the SNPs and
decreasing potential false findings. Hence, the SNPs with insuf-
ficient genotyping quality were eliminated.

� R version 3.6.3 [35]
� Python version 3.6.5 [39] is an open-source programming lan-
guage that applies ensemble learning methods.

� MDR [37], version 3.0.2, is open-source software used to iden-
tify gene interactions in genetic association studies.

5. Results

This section presents TuRF feature selection method results,
application results of different ensemble methods, and the discov-
ered epistasis interactions. First, a statistical hypothesis test was
applied using a p-value for reducing the massive number of SNPs
to significant SNPs only. ADNI dataset was applied by detecting
SNPs with a p-value < 0.01. Then, TuRF feature selection method
was used on all 3,502 SNPs. Each was assigned a score depending
on the SNP contribution to AD status. The number of SNPs after
applying TuRF is 1,050. The achieved SNP subset became a suitable
size for identifying significant gene-gene interactions. Then, differ-
ent ensemble learning algorithms (RF with Gini index and permu-
tation importance, XGBoost, and CART) were applied to discover
interacting genetic attributes associated with AD. Finally, the pre-
dictive accuracy of 2, 3, 4, and 5-SNP interaction models were
detected and evaluated using MDR [37]. The performance metrics
of the ensemble learning algorithms are shown in Fig. 2.

Table 2 presents the top ten significant pairwise models with
their BA model training, BA model testing, and p-values. The used
metric of model fit was BA which described the average of the sen-
sitivity and specificity. The results revealed that the training and
testing accuracies are close. This explains the decrease in overfit-
ting and the increase in generalizability [55]. The most robust
two-way interaction was found between SNP rs17021105 from
gene GRID2 and SNP rs17774281 near genes LINC01837 and
LOC105372364) with BA model training of 0.6649, BA model test-
ing of 0.6505, and a significance level of p-value 9.48E-08. These
Fig. 2. The performance metrics of the ensemble learning algorithms.



Table 2
The top ten pairwise interaction models using MDR.

Model SNP(Gene) BA model
training

BA model
testing

P-value

rs17021105, rs17774281
(GRID2, Near genes LINC01837
and LOC105372364)

0.6649 0.6505 9.48E�08

rs10961291, rs17565918
(LOC101929507, FHOD3)

0.6636 0.6398 9.69E�07

rs17557796, rs1405904
(near genes ELAVL2 and
LOC105375992, –)

0.6594 0.6560 3.32E�06

rs528785, rs10862418
(–, –)

0.6573 0.6525 7.17E�07

rs17021105, rs1428896
(GRID2, –)

0.6568 0.6568 3.01E�07

rs17021105, rs1008975
(GRID2, EBF2)

0.6570 0.6518 5.40E�07

rs12621622, rs10862418
(HPCAL1, –)

0.6561 0.6561 6.14E�07

rs17021105, rs17557796
(GRID2, Near genes ELAVL2 and
LOC105375992)

0.6556 0.6416 1.05E�06

rs528785, rs2505389
(–,–)

0.6545 0.6257 2.23E�06

rs17021105, rs1405904
(GRID2, –)

0.6515 0.6490 2.14E�06

Table 4
The top ten 4-way interaction models using MDR.

Model BA model
training

BA model
testing

P-value

1-rs17557796, rs1405904, rs907808,
rs4799866

0.7878 0.6977 3.46E�06
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results suggested that these two-way interactions are associated
with AD disease.

Table 3 presents the ten most significant (p-value < 0.01) SNP
trios with BA model training, BA model testing, and p-values. The
most robust three-way interaction was found among (non-coding
SNP rs13013095, SNP rs17021105 from gene GRID2, and non-
coding SNP rs1428896) with BA model training of 0.7170, BA
model testing of 0.6849, and a significance level of p-value
Table 3
The top ten 3-way interaction models using MDR.

Model BA
model
training

BA
model
testing

P-value

rs13013095, rs17021105, rs1428896
(–, GRID2, –)

0.7170 0.6849 9.52E�09

rs7604762, rs17021105, rs1428896
(–, GRID2, –)

0.7144 0.7020 3.81E�08

rs11682196, rs17021105, rs17774281
(CTNNA2, GRID2, near genes
LINC01837 and LOC105372364)

0.7143 0.6816 9.18E�09

rs17021105, rs17557796, rs17774281
(GRID2, near genes ELAVL2 and
LOC105375992, near genes
LINC01837 and LOC105372364)

0.7135 0.6931 1.41E�08

rs1545077, rs17021105, rs1428896
(NSUN7, GRID2, –)

0.7117 0.6957 1.55E�07

rs17021105, rs6486112, rs10784277
(GRID2, near genes SCUBE2 and
LOC105376541, TAFA2)

0.7101 0.6934 8.97E�09

rs17021105, rs8071496, rs17774281
(GRID2, LINC01482, near genes
LINC01837 and LOC105372364)

0.7093 0.6679 2.78E�09

rs528785, rs352098, rs17774281
(–, LINC02880, near genes LINC01837
and LOC105372364)

0.7084 0.6708 1.98E�08

rs7604762, rs17557796, rs907808
(–, near genes ELAVL2 and
LOC105375992, IGF1R)

0.7088 0.6445 2.39E�07

rs17557796, rs1405904, rs907808
(near genes ELAVL2 and
LOC105375992, –, IGF1R)

0.7071 0.6648 2.00E�07
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9.52E-09. These results suggested that these pure three-way syner-
gistic effects among the three SNPs are associated with AD disease.

Table 4 presents the top ten four-way interaction models with
their BA model training, BA model testing, and p-values. The most
significant four-way interaction was found among SNP rs17557796
near genes ELAVL2 and LOC105375992, non-coding SNP
rs1405904, SNP rs907808 from gene IGF1R, and SNP rs4799866
from gene FHOD3 with BAmodel training of 0.7878, BAmodel test-
ing of 0.6977, and a significance level of p-value 3.46E-06. These
results suggested that these four-way interactions are associated
with the disease.

Table 5 shows the top ten five-way interaction models with
their BA model training, BA model testing, and p-values. The best
five-way interaction was found among non-coding SNP rs787994,
SNP rs7630827 from gene CPNE4, SNP rs17557796 near genes
ELAVL2, and LOC105375992, SNP rs6486112 near genes SCUBE2
and LOC105376541, and SNP rs8097433 from gene FHOD3. In
the 5-way interaction models, the best-achieved BA model train-
ing, BA model testing, and significance level (p-value) are 0.8758,
0.6126, and 7.07E-05, respectively.
6. Discussion

Exploring genetic markers associated with complex human dis-
eases like AD help in better understanding the disease etiology to
diagnose, treat, improve personalized therapeutic strategies, and
(Near genes ELAVL2 and
LOC105375992, –, IGF1R, FHOD3)

2-rs7604762, rs17557796,
rs10784277, rs1405904
(–, Near genes ELAVL2 and
LOC105375992, TAFA2, –)

0.7860 0.6492 3.04E�06

3-rs13013095, rs17557796, rs907808,
rs4799866
(–, near genes ELAVL2 and
LOC105375992, IGF1R, FHOD3)

0.7850 0.6587 4.35E�07

4-rs7604762, rs17557796, rs907808,
rs4799866
(–, Near genes ELAVL2 and
LOC105375992, IGF1R, FHOD3)

0.7844 0.6547 3.11E�06

5-rs7604762, rs17557796, rs1405904,
rs907808
(–, Near genes ELAVL2 and
LOC105375992, –, IGF1R)

0.7819 0.6715 2.20E�06

6-rs10084340, rs17557796,
rs1405904, rs11857366
(ARHGAP15, near genes ELAVL2
and LOC105375992, –, IGF1R)

0.7824 0.6502 1.05E�06

7-rs10084340, rs17557796,
rs1405904, rs907808
(ARHGAP15, near genes ELAVL2
and LOC105375992, –, IGF1R)

0.7817 0.6675 4.89E�07

8-rs13013095, rs17557796, rs907808,
rs8097433
(–, near genes ELAVL2 and
LOC105375992, IGF1R, FHOD3)

0.7816 0.662 9.35E�07

9-rs7604762, rs7630827, rs17557796,
rs1405904
(–, CPNE4, near genes ELAVL2 and
LOC105375992, –)

0.7815 0.6591 1.09E�05

10-rs7604762, rs17557796,
rs17305480, rs907808
(–, near genes ELAVL2 and
LOC105375992, CRYL1, IGF1R)

0.7811 0.6094 9.66E�08



Table 5
The top ten 5-way interaction models using MDR.

Model BA
model
training

BA
model
testing

P-value

1-rs787994, rs7630827,
rs17557796, rs6486112, rs8097433
(–, CPNE4, near genes ELAVL2 and
LOC105375992, near genes SCUBE2
and LOC105376541, FHOD3)

0.8758 0.6126 7.07E�05

2-rs787994, rs352098, rs17557796,
rs6486112, rs4799866
(–, LINC02880, near genes ELAVL2 and
LOC105375992, near genes SCUBE2
and LOC105376541, FHOD3)

0.8771 0.6011 2.60E�05

3-rs787994, rs7630827, rs17557796,
rs6486112, rs4799866
(–, CPNE4, near genes ELAVL2 and
LOC105375992, near genes SCUBE2
and LOC105376541, FHOD3)

0.8717 0.6165 0.0001

4-rs7630827, rs17557796, rs2505389,
rs1405904, rs8071496
(CPNE4, near genes ELAVL2 and
LOC105375992, –, –, LINC01482)

0.8715 0.6450 3.15E�05

5-rs787994, rs352098, rs17557796,
rs6486112, rs8097433
(–, LINC02880, Near genes ELAVL2 and
LOC105375992, Near genes SCUBE2
and LOC105376541, FHOD3)

0.8740 0.6073 3.18E�05

6-rs7604762, rs7630827, rs17557796,
rs1405904, rs4799866
(–, CPNE4, near genes ELAVL2 and
LOC105375992, –, FHOD3)

0.8723 0.6509 2.75E�05

7-rs7604762, rs352098, rs17557796,
rs6486112, rs4799866
(–, LINC02880, near genes ELAVL2 and
LOC105375992, Near genes SCUBE2
and LOC105376541, FHOD3)

0.8709 0.5925 0.0001

8-rs787994, rs17557796, rs6486112,
rs8097433, rs3013042
(–, near genes ELAVL2 and
LOC105375992, Near genes SCUBE2
and LOC105376541, FHOD3, –)

0.8723 0.5830 9.08E�05

9-rs7630827, rs17557796, rs4880575,
rs2505389, rs12587274
(CPNE4, near genes ELAVL2 and
LOC105375992, –, –, –)

0.8673 0.6378 0.0007

10-rs17557796, rs2505389, rs10862418,
rs1405904, rs8071496
(near genes ELAVL2 and
LOC105375992, –, –, –, LINC01482)

0.8674 0.6815 0.0001
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even prevent the disease. Given the complexity of AD disease, the
causing factors are interactions among multiple genetic attributes
instead of individual genetic variants. However, searching for com-
binations of features requires a significant challenge for genome-
wide association research. In this work, we applied different
ensemble learning algorithms to identify genetic attributes associ-
ated with AD. We performed data preprocessing and filtering on
the ADNI dataset using TuRF feature selection method. We opti-
mized the parameters for the applied ensemble learning methods
for GWAS data analyses by parameter tuning.

The advantages and disadvantages of the applied ensemble
learning techniques can be described as follows. We applied RF
because it can handle several input variables and identify the most
significant SNPs. This algorithm outputs the importance of the
variable, which can be a significant SNP. RF can rank the SNPs using
Gini importance or permutation methods. Further, it can deal with
imbalanced dataset problems. The main disadvantage of RF is con-
sidered a black box technique as there is little control over what
the model does. Hence, trying different parameters and random
seeds is a suitable solution.
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The advantage of using XGBoost is a highly flexible algorithm
does not need normalized features and can handle missing data
in the used dataset with its in-build features. Furthermore, it can
output the importance of each SNP. The main disadvantage of
XGBoost algorithm is the difficulty of interpretation. CART algo-
rithm was applied as it needs minimal supervision and performs
easy-to-understand models. We used this algorithm to find signif-
icant SNPs automatically. The disadvantage of using CART algo-
rithm is having a limited number of positions suitable for
accessible predictors.

Hence, we used ensemble learning algorithms to produce rank-
ings on the importance of SNP contribution to the disease classifi-
cation. By integrating the rankings provided by the applied
algorithms, we identified a set of 76 top-ranked SNPs from both
coding and non-coding regions of DNA. The coding SNPs mapped
to 38 genes, including known AD association genes and unknown
but potential AD association genes. Our results suggested novel
genes associated with AD, as shown in Table 1. We further applied
epistasis interaction analysis on the 76 SNPs using MDR to discover
important pairwise, 3-way, 4-way, and 5-way interactions, as
shown in the previous section. The performed analysis of the iden-
tified genes also suggests significant epistasis interactions that
may explain the risk of AD. Gene information of these SNPs was
detected using the NCBI database [56]. The achieved results of
our work outperformed the results reported in [25–31]. This pro-
posed work was not limited to examining the association of each
SNP independently with the phenotype as reported in [25,26] but
also focused on the interaction between multiple SNP loci up to
fifth-order interactions. In this work, the same dataset (ADNI) used
in [27] was used with the proposed paper, and the achieved results
outperformed the results reported in [27].

We highlight some significant findings in the following para-
graphs. One of the most repeated interactions is between IGF1R
and FHOD3 in models 1,3,4, and 8, as observed in Table 4. Also, it
was shown that IGF1R gene is repeated with ARHGAP15 in models
6 and 7, as observed in Table 4.

It was shown that gene TAFA2 has strong three-way interac-
tions with gene GRID2 and a SNP rs6486112 near genes SCUBE2
and LOC105376541. TAFA2 has significant 4-way interactions with
non-coding SNP rs7604762, SNP rs17557796 Near genes ELAVL2
and LOC105375992, gene LOC105375992, and non-coding SNP
rs1405904. This paper observed that gene LINC01482 has strong
5-way interactions with gene CPNE4, SNP rs17557796 near genes
ELAVL2 and LOC105375992, non-coding SNP rs2505389, and
non-coding rs1405904). Also, there are significant interactions
between LINC02880 gene and FHOD3 gene in models 2,5 and 7,
as shown in Table 5.

In this work, statistical analysis was performed using statistical sig-
nificance, which is the main criterion for interpreting our results. A p-
value less than 0.01 was used as a significance level. The proposed
framework presents the most significant epistasis interactions (p-
value < 0.01). Hence, the achieved results are statistically significant.

Discovering novel risk genes and epistasis interactions are benefi-
cial for clinical and public health practices to assist disease diagnosis,
predict disease risk, guide patient care, and facilitate the develop-
ment of suitable drug discoveries. Furthermore, we suggest future
directions by linking clinical, genetic, and other biomarkers data such
as PET, MRI, and CSF assays to define disease staging and possibly
help detect etiology. This combination may shape the future thera-
peutic approach toward pre-symptomatic PM for AD prevention.
7. conclusions

In this paper, MDR constructive induction algorithm was inte-
grated with ensemble learning algorithms to discover epistasis
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interactions in a computationally efficient method. The proposed
framework was implemented and applied to ADNI dataset, and
the results of the most significant two-, three-, four-, and five-
way interactions are shown. Discovering new interactions from
large-scale genotype data is an important research goal. This paper
aims to reduce high dimensionality and improve the performance
by selecting a subset of powerful SNP features from a dataset with
many features using feature selection methods. The results demon-
strate that the proposed framework can detect feature subsets
more efficiently and improve classification performance.

It was shown that machine learning techniques have great abil-
ities in modeling difficult relationships between many attributes.
In GWAS, suitable algorithms are needed for discovering the non-
linear, non-additive interactions between several genetic factors
that may contribute to the complex disease outcome. This paper
demonstrates a novel framework using different ensemble learn-
ing methods to search for epistasis interactions associated with
AD. We hope our work will help better understand AD disease eti-
ology and facilitate the development of PM approaches and suit-
able drug discoveries. In this paper, the most significant
interaction models associated with the disease were identified.
The five-way interaction models were identified with classification
accuracy varied between (0.8674–0.8758). While the accuracy of
the two-way, three-way, and four-way models varied between
(0.6515–0.6649), (0.7071–0.7170), and (0.7811–0.7878),
respectively.

Integrating constructive induction algorithms like MDR with
ensemble learning algorithms in the proposed framework makes
it robust, applicable, and reliable to create models for other risky
diseases. In This paper, there are 38 genes mapped from the 76
SNPs, including genes that have been already identified previously
for AD disease and the newly discovered genes. These determined
and discovered genes can help to explore significant interactions
among them.
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